Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.946
1.
Cells ; 13(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38727282

Impaired neuronal plasticity and cognitive decline are cardinal features of Alzheimer's disease and related Tauopathies. Aberrantly modified Tau protein and neurotransmitter imbalance, predominantly involving acetylcholine, have been linked to these symptoms. In Drosophila, we have shown that dTau loss specifically enhances associative long-term olfactory memory, impairs foot shock habituation, and deregulates proteins involved in the regulation of neurotransmitter levels, particularly acetylcholine. Interestingly, upon choline treatment, the habituation and memory performance of mutants are restored to that of control flies. Based on these surprising results, we decided to use our well-established genetic model to understand how habituation deficits and memory performance correlate with different aspects of choline physiology as an essential component of the neurotransmitter acetylcholine, the lipid phosphatidylcholine, and the osmoregulator betaine. The results revealed that the two observed phenotypes are reversed by different choline metabolites, implying that they are governed by different underlying mechanisms. This work can contribute to a broader knowledge about the physiologic function of Tau, which may be translated into understanding the mechanisms of Tauopathies.


Choline , Drosophila Proteins , Memory , tau Proteins , Animals , Choline/metabolism , tau Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Habituation, Psychophysiologic , Drosophila melanogaster/metabolism , Drosophila/metabolism , Acetylcholine/metabolism
2.
J Transl Med ; 22(1): 442, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730286

INTRODUCTION: Lung cancer is a prevalent malignancy globally, and immunotherapy has revolutionized its treatment. However, resistance to immunotherapy remains a challenge. Abnormal cholinesterase (ChE) activity and choline metabolism are associated with tumor oncogenesis, progression, and poor prognosis in multiple cancers. Yet, the precise mechanism underlying the relationship between ChE, choline metabolism and tumor immune microenvironment in lung cancer, and the response and resistance of immunotherapy still unclear. METHODS: Firstly, 277 advanced non-small cell lung cancer (NSCLC) patients receiving first-line immunotherapy in Sun Yat-sen University Cancer Center were enrolled in the study. Pretreatment and the alteration of ChE after 2 courses of immunotherapy and survival outcomes were collected. Kaplan-Meier survival and cox regression analysis were performed, and nomogram was conducted to identify the prognostic and predicted values. Secondly, choline metabolism-related genes were screened using Cox regression, and a prognostic model was constructed. Functional enrichment analysis and immune microenvironment analysis were also conducted. Lastly, to gain further insights into potential mechanisms, single-cell analysis was performed. RESULTS: Firstly, baseline high level ChE and the elevation of ChE after immunotherapy were significantly associated with better survival outcomes for advanced NSCLC. Constructed nomogram based on the significant variables from the multivariate Cox analysis performed well in discrimination and calibration. Secondly, 4 choline metabolism-related genes (MTHFD1, PDGFB, PIK3R3, CHKB) were screened and developed a risk signature that was found to be related to a poorer prognosis. Further analysis revealed that the choline metabolism-related genes signature was associated with immunosuppressive tumor microenvironment, immune escape and metabolic reprogramming. scRNA-seq showed that MTHFD1 was specifically distributed in tumor-associated macrophages (TAMs), mediating the differentiation and immunosuppressive functions of macrophages, which may potentially impact endothelial cell proliferation and tumor angiogenesis. CONCLUSION: Our study highlights the discovery of ChE as a prognostic marker in advanced NSCLC, suggesting its potential for identifying patients who may benefit from immunotherapy. Additionally, we developed a prognostic signature based on choline metabolism-related genes, revealing the correlation with the immunosuppressive microenvironment and uncovering the role of MTHFD1 in macrophage differentiation and endothelial cell proliferation, providing insights into the intricate workings of choline metabolism in NSCLC pathogenesis.


Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Choline , Endothelial Cells , Lung Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Choline/metabolism , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Middle Aged , Prognosis , Immunotherapy , Immunosuppression Therapy , Kaplan-Meier Estimate , Nomograms , Metabolic Reprogramming
3.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Article En | MEDLINE | ID: mdl-38725089

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Curcumin , Disease Models, Animal , Methionine , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/deficiency , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Mice , Male , Diet, Western/adverse effects , Mice, Inbred C57BL , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Propionates/pharmacology , Propionates/therapeutic use , Propionates/metabolism , Humans , Choline/metabolism , Choline/pharmacology
4.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732193

One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.


Carbon , Reproductive Techniques, Assisted , Humans , Carbon/metabolism , Vitamin B 12/metabolism , Fertilization in Vitro/methods , Female , Homocysteine/metabolism , Homocysteine/blood , Folic Acid/metabolism , Dietary Supplements , Choline/metabolism , Zinc/metabolism , Betaine/metabolism , Biomarkers
5.
Folia Neuropathol ; 62(1): 13-20, 2024.
Article En | MEDLINE | ID: mdl-38741433

The accurate diagnosis of brain tumour is very important in modern neuro-oncology medicine. Magnetic resonance spectroscopy (MRS) is supposed to be a promising tool for detecting cancerous lesions. However, the interpretation of MRS data is complicated by the fact that not all cancerous lesions exhibit elevated choline (Cho) levels. The main goal of our study was to investigate the lack of Cho lesion /Cho ref elevation in the population of grade II-III gliomas. 89 cases of gliomas grade II and III were used for the retrospective analysis - glioma (astrocytoma or oligodendroglioma) grade II (74 out of 89 cases [83%]) and III (15 out of 89 cases [17%]) underwent conventional MRI extended by MRS before treatment. Histopathological diagnosis was obtained either by biopsy or surgical resection. Gliomas were classified to the group of no-choline elevation when the ratio of choline measured within the tumour (Cho lesion ) to choline from NABT (Cho ref ) were equal to or lower than 1. Significant differences were observed between ratios of Cho lesion /Cr lesion calculated for no-choline elevation and glial tumour groups as well as in the NAA lesion /Cr lesion ratio between the no-choline elevation group and glial tumour group. With consistent data concerning choline level elevation and slightly lower NAA value, the Cho lesion /NAA lesion ratio is significantly higher in the WHO II glial tumour group compared to the no-choline elevation cases ( p < 0.000). In the current study the results demonstrated possibility of lack of choline elevation in patients with grade II-III gliomas, so it is important to remember that the lack of elevated choline levels does not exclude neoplastic lesion.


Brain Neoplasms , Choline , Glioma , Humans , Choline/metabolism , Choline/analysis , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Glioma/pathology , Glioma/diagnosis , Glioma/metabolism , Middle Aged , Adult , Female , Male , Retrospective Studies , Proton Magnetic Resonance Spectroscopy/methods , Aged , Magnetic Resonance Spectroscopy/methods , Neoplasm Grading , Young Adult
6.
Physiol Plant ; 176(2): e14296, 2024.
Article En | MEDLINE | ID: mdl-38650503

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Betaine , Choline Dehydrogenase , Salt Tolerance , Betaine/metabolism , Salt Tolerance/genetics , Choline Dehydrogenase/metabolism , Choline Dehydrogenase/genetics , Choline/metabolism , Chlorophyceae/genetics , Chlorophyceae/physiology , Chlorophyceae/enzymology , Chlorophyceae/metabolism , Microalgae/genetics , Microalgae/enzymology , Microalgae/metabolism , Molecular Docking Simulation , Sodium Chloride/pharmacology
7.
Neurochem Int ; 176: 105737, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599243

BACKGROUND: Evidence from previous studies indicates that neuroinflammation contributes to the onset of Alzheimer's Disease (AD). Moreover, cellular dysfunction is induced by impaired signaling of neurotransmitters. This study aimed to explore the correlation between cellular immune dysfunction and neurotransmitter changes through cranial Magnetic Resonance Spectroscopy (MRS) in AD patients. METHODS: Here, 32 AD, 40 Vascular Dementia (VD), and 35 Non-Dementia Elderly Control (NDE) cases were enrolled. Flow cytometry was performed to characterize lymphocyte subsets in plasma samples. The IL-1ß and Caspase-1 levels were detected by ELISA. The NLRP3 expression level was measured by Western Blot (WB). The equivalence of N-acetylaspartate (NAA), Creatine (Cr), Choline (Cho), and Inositol (MI) in bilateral hippocampi of patients was examined by MRS. The association of NAA/Cr or MI/Cr ratios with the proportion of T lymphocyte subsets or NK cell subsets was determined through single-factor correlation analysis. RESULTS: The proportion of T lymphocyte subsets was significantly lower in the AD group than in the NDE group (P < 0.01). On the other hand, the Caspase-1, NLRP3, and IL-1ß protein expression levels were significantly higher in the AD group than in the other groups. Further analysis showed that the NAA/Cr ratio was lower in the AD group than in the NDE group. Additionally, a significant positive correlation was found between the NAA/Cr ratio and the MMSE score (r = 0.81, P < 0.01). Moreover, a significant positive correlation was observed between the NAA/Cr and T lymphocyte ratios. The NAA/Cr ratio was significantly negatively correlated with the proportion of NK cells in the blood (r = ï¼0.83, P < 0.01). A significant negative correlation was also recorded between the MI/Cr and T cell ratios in blood samples. CONCLUSIONS: Impaired cellular immune dysfunction in AD patients was significantly correlated with abnormal MRS. Neuroimmune dysfunction may contribute to the pathogenesis of AD and alter the metabolism of neurotransmitters such as aspartic acid and MI in the brains of AD patients. TRIAL REGISTRATION: Not applicable.


Alzheimer Disease , Magnetic Resonance Spectroscopy , Humans , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Male , Female , Aged , Magnetic Resonance Spectroscopy/methods , Immunity, Cellular , Aged, 80 and over , Middle Aged , Choline/metabolism
8.
Nat Struct Mol Biol ; 31(4): 701-709, 2024 Apr.
Article En | MEDLINE | ID: mdl-38589607

Choline is a vital nutrient and a precursor for the biosynthesis of essential metabolites, including acetylcholine (ACh), that play a central role in fetal development, especially in the brain. In cholinergic neurons, the high-affinity choline transporter (CHT1) provides an extraordinarily efficient reuptake mechanism to reutilize choline derived from intrasynaptical ACh hydrolysis and maintain ACh synthesis in the presynapse. Here, we determined structures of human CHT1 in three discrete states: the outward-facing state bound with the competitive inhibitor hemicholinium-3 (HC-3); the inward-facing occluded state bound with the substrate choline; and the inward-facing apo open state. Our structures and functional characterizations elucidate how the inhibitor and substrate are recognized. Moreover, our findings shed light on conformational changes when transitioning from an outward-facing to an inward-facing state and establish a framework for understanding the transport cycle, which relies on the stabilization of the outward-facing state by a short intracellular helix, IH1.


Choline , Membrane Transport Proteins , Humans , Choline/metabolism , Membrane Transport Proteins/metabolism , Biological Transport , Acetylcholine/metabolism
9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621978

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Methionine/metabolism , Methionine/pharmacology , Interleukin-10/genetics , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Liver , Racemethionine/metabolism , Racemethionine/pharmacology , Diet , RNA, Messenger/metabolism
10.
Dev Psychobiol ; 66(2)2024 Feb.
Article En | MEDLINE | ID: mdl-38646069

Choline and folate are critical nutrients for fetal brain development, but the timing of their influence during gestation has not been previously characterized. At different periods during gestation, choline stimulation of α7-nicotinic receptors facilitates conversion of γ-aminobutyric acid (GABA) receptors from excitatory to inhibitory and recruitment of GluR1-R2 receptors for faster excitatory responses to glutamate. The outcome of the fetal development of inhibition and excitation was assessed in 159 newborns by P50 cerebral auditory-evoked responses. Paired stimuli, S1, S2, were presented 500 msec apart. Higher P50 amplitude in response to S1 (P50S1microV) assesses excitation, and lower P50S2microV assesses inhibition in this paired-stimulus paradigm. Development of inhibition was related solely to maternal choline plasma concentration and folate supplementation at 16 weeks' gestation. Development of excitation was related only to maternal choline at 28 weeks. Higher maternal choline concentrations later in gestation did not compensate for earlier lower concentrations. At 4 years of age, increased behavior problems on the Child Behavior Checklist 1½-5yrs were related to both newborn inhibition and excitation. Incomplete development of inhibition and excitation associated with lower choline and folate during relatively brief periods of gestation thus has enduring effects on child development.


Choline , Evoked Potentials, Auditory , Folic Acid , Humans , Choline/pharmacology , Choline/metabolism , Female , Folic Acid/pharmacology , Male , Infant, Newborn , Pregnancy , Evoked Potentials, Auditory/physiology , Evoked Potentials, Auditory/drug effects , Child, Preschool , Fetal Development/physiology , Fetal Development/drug effects , Synaptic Transmission/physiology , Synaptic Transmission/drug effects , Adult , Gestational Age , Child Development/physiology , Child Development/drug effects
11.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38515015

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Iron Deficiencies , Iron , Pregnancy , Female , Animals , Rats , Male , Iron/metabolism , Chromatin/genetics , Chromatin/metabolism , Animals, Newborn , Rats, Sprague-Dawley , Epigenesis, Genetic , Choline/pharmacology , Choline/metabolism , Hippocampus
12.
Medicina (Kaunas) ; 60(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38541155

Background and Objectives: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent worldwide. It progresses from simple steatosis to non-alcoholic steatohepatitis (NASH). Fibrosis is often present during NAFLD progression; however, factors determining which subjects develop NASH or fibrosis are unclear. Insulin-like growth factor binding proteins (IGFBPs) are a family of secreted proteins involved in senescence and scarring, mainly synthetized in the liver. Here, we aimed to study the association of IGFBPs and their induced senescence with the progression of NAFLD and liver fibrosis. Materials and Methods: A total of 16-week-old male C57BL/6 mice weighing 23 ± 3 g were fed either methionine/choline-deficient (MCD) or control diet for 2, 8, or 12 weeks. Blood and liver samples were collected, and a histological assessment of NAFLD and fibrosis was performed. Fat contents were measured. Cellular senescence was evaluated in the liver. IGFBP levels were assessed in the liver and serum. Data were expressed as mean ± SD and analyzed by a one-way ANOVA followed by Tukey's test. Lineal regression models were applied for NAFLD and fibrosis progression. p < 0.05 was considered significant. Results: IGFBP-1 and -2 were increased in serum during NAFLD. IGFBP-7 was significantly increased in the serum in NASH compared with the controls. Senescence increased in NAFLD. Serum and liver IGFBP-7 as well as SA-ß-gal activity increased as fibrosis progressed. Both IGFBP-7 and cellular senescence were significantly higher during NAFLD and fibrosis in MCD-fed mice. Conclusions: IGFBP-1, -2, and -7, through their consequent senescence, have a role in the progression of NAFLD and its associated fibrosis, being a plausible determinant in the progression from steatosis to NASH.


Non-alcoholic Fatty Liver Disease , Male , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/complications , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Peptides , Mice, Inbred C57BL , Liver , Liver Cirrhosis/complications , Choline/metabolism , Choline/pharmacology , Cellular Senescence , Disease Models, Animal
13.
Molecules ; 29(6)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38542959

Previous studies have revealed the microbial metabolism of dietary choline in the gut, leading to its conversion into trimethylamine (TMA). Polymethoxyflavones (PMFs), exemplified by tangeretin, have shown efficacy in mitigating choline-induced cardiovascular inflammation. However, the specific mechanism by which these compounds exert their effects, particularly in modulating the gut microbiota, remains uncertain. This investigation focused on tangeretin, a representative PMFs, to explore its influence on the gut microbiota and the choline-TMA conversion process. Experimental results showed that tangeretin treatment significantly attenuated the population of CutC-active bacteria, particularly Clostridiaceae and Lactobacillus, induced by choline chloride in rat models. This inhibition led to a decreased efficiency in choline conversion to TMA, thereby ameliorating cardiovascular inflammation resulting from prolonged choline consumption. In conclusion, tangeretin's preventive effect against cardiovascular inflammation is intricately linked to its targeted modulation of TMA-producing bacterial activity.


Arteritis , Flavones , Gastrointestinal Microbiome , Rats , Animals , Choline/metabolism , Methylamines/pharmacology , Methylamines/metabolism , Bacteria/metabolism , Inflammation/drug therapy
14.
Cereb Cortex ; 34(3)2024 03 01.
Article En | MEDLINE | ID: mdl-38430105

Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.


Glutamic Acid , Glutamine , Child , Humans , Adolescent , Young Adult , Glutamine/metabolism , Magnetic Resonance Spectroscopy/methods , Glutamic Acid/metabolism , Brain/diagnostic imaging , Brain/metabolism , Choline/metabolism , Creatine/metabolism , Inositol/metabolism , gamma-Aminobutyric Acid/metabolism , Receptors, Antigen, T-Cell/metabolism , Aspartic Acid/metabolism
15.
J Affect Disord ; 355: 265-282, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38554884

N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.


Aspartic Acid/analogs & derivatives , Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Proton Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Brain/diagnostic imaging , Brain/metabolism , Aspartic Acid/metabolism , Creatine/metabolism , Choline/metabolism
16.
Epigenetics ; 19(1): 2318516, 2024 Dec.
Article En | MEDLINE | ID: mdl-38484284

Epigenetic modifications, including DNA methylation, are proposed mechanisms explaining the impact of parental exposures to foetal development and lifelong health. Micronutrients including folate, choline, and vitamin B12 provide methyl groups for the one-carbon metabolism and subsequent DNA methylation processes. Placental DNA methylation changes in response to one-carbon moieties hold potential targets to improve obstetrical care. We conducted a systematic review on the associations between one-carbon metabolism and human placental DNA methylation. We included 22 studies. Findings from clinical studies with minimal ErasmusAGE quality score 5/10 (n = 15) and in vitro studies (n = 3) are summarized for different one-carbon moieties. Next, results are discussed per study approach: (1) global DNA methylation (n = 9), (2) genome-wide analyses (n = 4), and (3) gene specific (n = 14). Generally, one-carbon moieties were not associated with global methylation, although conflicting outcomes were reported specifically for choline. Using genome-wide approaches, few differentially methylated sites associated with S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), or dietary patterns. Most studies taking a gene-specific approach indicated site-specific relationships depending on studied moiety and genomic region, specifically in genes involved in growth and development including LEP, NR3C1, CRH, and PlGF; however, overlap between studies was low. Therefore, we recommend to further investigate the impact of an optimized one-carbon metabolism on DNA methylation and lifelong health.


DNA Methylation , Placenta , Female , Humans , Pregnancy , Placenta/metabolism , Genome-Wide Association Study , Folic Acid , S-Adenosylmethionine/metabolism , Choline/metabolism , Carbon/metabolism
17.
J Bacteriol ; 206(4): e0008124, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38501746

Paracoccus denitrificans is a facultative methylotroph that can grow on methanol and methylamine as sole sources of carbon and energy. Both are oxidized to formaldehyde and then to formate, so growth on C1 substrates induces the expression of genes encoding enzymes required for the oxidation of formaldehyde and formate. This induction involves a histidine kinase response regulator pair (FlhSR) that is likely triggered by formaldehyde. Catabolism of some complex organic substrates (e.g., choline and L-proline betaine) also generates formaldehyde. Thus, flhS and flhR mutants that fail to induce expression of the formaldehyde catabolic enzymes cannot grow on methanol, methylamine, and choline. Choline is oxidized to glycine via glycine betaine, dimethylglycine, and sarcosine. By exploring flhSR growth phenotypes and the activities of a promoter and enzyme known to be upregulated by formaldehyde, we identify the oxidative demethylations of glycine betaine, dimethylglycine, and sarcosine as sources of formaldehyde. Growth on glycine betaine, dimethylglycine, and sarcosine is accompanied by the production of up to three, two, and one equivalents of formaldehyde, respectively. Genetic evidence implicates two orthologous monooxygenases in the oxidation of glycine betaine. Interestingly, one of these appears to be a bifunctional enzyme that also oxidizes L-proline betaine (stachydrine). We present preliminary evidence to suggest that growth on L-proline betaine induces expression of a formaldehyde dehydrogenase distinct from the enzyme induced during growth on other formaldehyde-generating substrates.IMPORTANCEThe bacterial degradation of one-carbon compounds (methanol and methylamine) and some complex multi-carbon compounds (e.g., choline) generates formaldehyde. Formaldehyde is toxic and must be removed, which can be done by oxidation to formate and then to carbon dioxide. These oxidations provide a source of energy; in some species, the CO2 thus generated can be assimilated into biomass. Using the Gram-negative bacterium Paracoccus denitrificans as the experimental model, we infer that oxidation of choline to glycine generates up to three equivalents of formaldehyde, and we identify the three steps in the catabolic pathway that are responsible. Our work sheds further light on metabolic pathways that are likely important in a variety of environmental contexts.


Betaine , Paracoccus denitrificans , Betaine/metabolism , Sarcosine/metabolism , Paracoccus denitrificans/genetics , Paracoccus denitrificans/metabolism , Methanol , Choline/metabolism , Glycine , Formaldehyde , Formates , Methylamines
18.
J Cancer Res Clin Oncol ; 150(3): 142, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38503944

PURPOSE: Trimethylamine N-oxide (TMAO), a gut microbiome-derived metabolite, and its precursors (carnitine, choline, betaine) have not been fully examined in relation to thyroid cancer (TC) risk. The aim of this study was to assess the value of TMAO and its precursors in diagnosis of benign and malignant thyroid nodules. METHODS: In this study, high-performance liquid chromatography-tandem mass spectrometry was utilized to measure the levels of plasma TMAO and its precursors (choline, carnitine, and betaine) in 215 TC patients, 63 benign thyroid nodules (BTN) patients and 148 healthy controls (HC). The distribution of levels of TMAO and its precursors among the three groups were compared by the Kruskal-Wallis test. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the sensitivity, specificity, and the predictive accuracy of single and combined biomarkers. RESULTS: In comparison to HC, TC showed higher levels of TMAO and lower levels of its precursors (carnitine, choline, and betaine) (all P < 0.001). Plasma choline (P < 0.01) and betaine (P < 0.05) were declined in BTN than HC. The levels of carnitine (P < 0.001) and choline (P < 0.05) were significantly higher in BTN than that in TC group. Plasma TMAO showed lower levels in TC with lymph node metastasis (101.5 (73.1-144.5) ng/ml) than those without lymph node metastasis (131 (84.8-201) ng/ml, P < 0.05). Combinations of these four metabolites achieved good performance in the differential diagnosis, with the area under the ROC curve of 0.703, 0.741, 0.793 when discriminating between TC and BTN, BTN and HC, TC and HC, respectively. CONCLUSION: Plasma TMAO, along with its precursors could serve as new biomarkers for the diagnosis of benign and malignant thyroid nodules.


Betaine , Methylamines , Thyroid Nodule , Humans , Betaine/metabolism , Choline/metabolism , Carnitine/metabolism , Thyroid Nodule/diagnosis , Lymphatic Metastasis , Biomarkers
19.
PLoS One ; 19(3): e0301133, 2024.
Article En | MEDLINE | ID: mdl-38547097

PURPOSE: Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), which has a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Piperine (Pip) is an extract of plants with powerful anti-inflammatory effects, however, the function of Pip in NASH remains elusive. Here, we aim to explore the role of Pip in NASH and to find the possible mechanisms. METHODS: Methionine and choline-deficient (MCD) diets were used to induce steatohepatitis, methionine- and choline-sufficient (MCS) diets were used as the control. After Pip treatment, H&E staining, Oil Red O staining, hepatic triglyceride (TG) content and F4/80 expression were performed to analysis liver steatosis and inflammation; Masson's staining, COL1A1 and α-SMA were detected liver fibrosis. Lipopolysaccharide (LPS) -treated AML12 cells were used to as the cell model to induce pyroptosis. Then, pyroptosis-related proteins, IL-1ß and LDH release were detected in vivo and in vitro. Finally, NF-κB inhibitor, BAY11-7082, was used to further demonstrate the mechanism of Pip in NASH. RESULTS: The study found that Pip alleviated liver steatosis, inflammation, hepatocyte injury, and fibrosis in mice fed with MCD diets. Moreover, the pyroptosis markers (NLRP3, ASC, caspase-1 p20, and GSDMD), IL-1ß and LDH release were decreased by Pip treatment. NF-κB activation was suppressed by Pip treatment and pyroptosis-related proteins were down regulated by BAY11-7082. CONCLUSION: Pip ameliorates NASH progression, and the therapeutical effect was associated with inhibition of hepatocyte pyroptosis induced by NF-κB.


Alkaloids , Benzodioxoles , Nitriles , Non-alcoholic Fatty Liver Disease , Piperidines , Polyunsaturated Alkamides , Sulfones , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , NF-kappa B/metabolism , Pyroptosis , Liver/metabolism , Liver Cirrhosis/pathology , Fibrosis , Inflammation/pathology , Choline/metabolism , Hepatocytes/metabolism , Methionine/metabolism , Mice, Inbred C57BL
20.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Article En | MEDLINE | ID: mdl-38327171

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Folic Acid Deficiency , Non-alcoholic Fatty Liver Disease , Male , Humans , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Betaine , Folic Acid Deficiency/metabolism , Folic Acid , Methylenetetrahydrofolate Reductase (NADPH2) , Genotype , Liver Cirrhosis/etiology , S-Adenosylmethionine , Choline/metabolism , Homocysteine
...